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Fig. 1: Real-to-sim policy evaluation with Gaussian Splatting simulation. Lefi: Correlation between simulated and real-world success
rates across multiple policies (ACT [1], DP [2], Pi-0 [3], SmolVLA [4]) shows that our simulation reliably predicts real-world performance.
Right: Representative tasks used for evaluation, including plush toy packing, rope routing, and T-block pushing, are visualized in both
real and simulated settings. Our framework reconstructs soft-body digital twins from real-world videos and achieves realistic appearance

and motion, enabling scalable and reproducible policy assessment.

Abstract— Robotic manipulation policies are advancing
rapidly, but their direct evaluation in the real world remains
costly, time-consuming, and difficult to reproduce, particularly
for tasks involving deformable objects. Simulation provides a
scalable and systematic alternative, yet existing simulators often
fail to capture the coupled visual and physical complexity of
soft-body interactions. We present a real-to-sim policy evalu-
ation framework that constructs soft-body digital twins from
real-world videos and renders robots, objects, and environments
with photorealistic fidelity using 3D Gaussian Splatting. We
validate our approach on representative deformable manipula-
tion tasks, including plush toy packing, rope routing, and T-
block pushing, demonstrating that simulated rollouts correlate
strongly with real-world execution performance and reveal key
behavioral patterns of learned policies. Our results suggest
that combining physics-informed reconstruction with high-
quality rendering enables reproducible, scalable, and accurate
evaluation of robotic manipulation policies. Website: https:
//real2sim-eval.github.io/

I. INTRODUCTION

Robotic manipulation policies have advanced rapidly
across a wide range of tasks [1, 2, 5-7]. However, their
evaluation still relies heavily on real-world trials, which are
slow, expensive, and difficult to reproduce. As the commu-
nity shifts toward training foundation models for robotics [3,
8-12], whose development depends on rapid iteration and
large-scale benchmarking, this reliance has become a signif-
icant bottleneck.
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Simulation offers a scalable and systematic alternative and
is widely used for data generation and training [13-18]. Yet it
is far less common as a tool for policy evaluation, primarily
due to poor sim-to-real correlation: a policy that performs
well in simulation often fails to translate to similar real-world
success. Narrowing this gap would allow simulation to serve
as a trustworthy proxy for real-world testing, greatly accel-
erating development cycles. This raises the central question:
how can we design simulators that are sufficiently realistic
to evaluate robot policies with confidence? To answer this
question, we propose a framework for building high-fidelity
simulators and investigate whether they can predict real-
world policy performance reliably.

We identify two key factors for aligning simulation with
reality: appearance and dynamics. On the appearance side,
rendered scenes must closely match real-world observations.
This is particularly challenging for policies that rely on
wrist-mounted cameras, where simple green-screen com-
positing [19] is insufficient. We address this by leveraging
3D Gaussian Splatting (3DGS) [20], which reconstructs pho-
torealistic scenes from a single scan and supports rendering
from arbitrary viewpoints. Beyond prior uses of 3DGS for
simulation [21-24], we enhance it with automatic position
and color alignment and object deformation handling, which
are essential for closing the appearance gap.

Dynamics present another major source of sim-to-real
discrepancy. Traditional simulators rely on low-dimensional
parameter tuning, which is insufficient for deformable objects
with many degrees of freedom. To address this challenge,
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we adopt PhysTwin [25], a framework that reconstructs
deformable objects as dense spring-mass systems optimized
directly from object interaction videos. This approach yields
efficient system identification while closely matching real-
world dynamics.

We integrate these appearance and dynamics components
into a unified simulator and expose it through a Gym-style
interface [26]. We evaluate this framework on representative
rigid- and soft-body manipulation tasks, including plush toy
packing, rope routing, and T-block pushing, using widely
adopted imitation learning algorithms: ACT [1], Diffusion
Policy (DP) [2], SmolVLA [4], and Pi-0 [3]. By comparing
simulated and real-world success rates and performing ab-
lation studies, we observe a strong correlation and confirm
that rendering and dynamics fidelity are both crucial to the
trustworthiness of simulation-based evaluation.

In summary, our main contributions are: (1) A com-
plete framework for evaluating robot policies in a Gaus-
sian Splatting-based simulator using soft-body digital twins.
(2) Empirical evidence that simulated rollouts strongly corre-
late with real-world success rates across representative tasks,
using policies trained exclusively on real-world data (no
co-training). (3) A detailed analysis of design choices that
improve the reliability of simulation as a predictor of real-
world performance, offering guidance for future simulation-
based evaluation pipelines.

II. RELATED WORKS
A. Robot Policy Evaluation

Evaluating robot policies is essential for understanding and
comparing policy behaviors. Most systems are still evaluated
directly in the real world [11, 27-30], but such evaluations
are costly, time-consuming, and usually tailored to specific
tasks, embodiments, and sensor setups. To enable more
systematic study, prior works have introduced benchmarks,
either in the real world through standardized hardware se-
tups [31-35] or in simulation through curated assets and task
suites [16, 33, 36-44]. Real-world benchmarks offer high
fidelity but lack flexibility and scalability, while simulators
often suffer from unrealistic dynamics and rendering, which
limits their reliability as proxies for physical experiments.
This is widely referred to as the “sim-to-real gap” [45-48].
We aim to narrow this gap by building a realistic simulator
that combines high-quality rendering with faithful soft-body
dynamics. Compared to SIMPLER [19], which relies on
green-screen compositing, and Real-is-sim [21], which fo-
cuses on rigid-body simulation, our method integrates Gaus-
sian Splatting-based rendering with soft-body digital twins
derived from interaction videos, eliminating the dependence
on static cameras and providing more realistic appearance
and dynamics.

B. Physical Digital Twins

Digital twins seek to realistically reconstruct and simulate
real-world objects. Many existing frameworks rely on pre-
specified physical parameters [49-53], which limits their
ability to capture complex real-world dynamics or leverage

data from human interaction. While rigid-body twins are
well studied [54-57], full-order parameter identification for
deformable objects remains challenging. Learning-based ap-
proaches have been proposed to capture such dynamics [58—
61], but they often sacrifice physical consistency, which
is critical for evaluating manipulation policies in contact-
rich settings. Physics-based methods that optimize physical
parameters from video observations [62—65] offer a more
promising path. Among them, PhysTwin [25] reconstructs
deformable objects as dense spring-mass systems directly
from human-object interaction videos, achieving state-of-the-
art realism and efficiency. Our work builds on PhysTwin
and integrates its reconstructions with a Gaussian Splatting
simulator to bridge the dynamics gap in policy evaluation.

C. Gaussian Splatting Simulators

Building simulators that closely match the real world re-
quires high-quality rendering and accurate physics. Gaussian
Splatting (3DGS) [20] has recently emerged as a powerful
approach for scene reconstruction, enabling photorealistic,
real-time rendering from arbitrary viewpoints [51, 56]. Sev-
eral studies have demonstrated its potential in robotics,
showing that 3DGS-based rendering can improve sim-to-
real transfer for vision-based policies [22, 66, 67], augment
training datasets [23, 24, 68, 69], and enable real-to-sim
evaluation [21, 70]. We extend this line of work by support-
ing soft-body interactions, incorporating PhysTwin [25] for
realistic dynamics, and introducing automated position and
color alignment, resulting in a complete and evaluation-ready
simulator.

ITII. METHOD
A. Problem Definition

We study the policy evaluation problem: Can a simulator
reliably predict the real-world performance of visuomotor
policies trained with real data? In a typical evaluation
pipeline [11, 71], multiple policies are executed across
controlled initial configurations in both simulation and the
real world, and performance is measured through rollout-
based metrics, typically expressed as scalar scores u € [0, 1].
The objective is to establish a strong correlation between
simulated and real-world outcomes, represented by the paired
set {(uiﬁsim,umea])}f’:], where u;sm and u; ey denote the
performance of the i-th policy in simulation and reality,
respectively, and N is the number of evaluated policies.

To achieve better performance correlation, one promising
way is to build a simulator that yields consistent results
with the real world. Formally, let {(s;,0;,a,)}_; denote the
sequence of environment states s;, robot observations oy,
and robot actions a; over a time horizon 7. A simulator
for policy evaluation should contain two core components:
(1) Dynamics model: s;+1 = f(s¢,a;), which predicts future
states given the current state and robot actions. (2) Appear-
ance model: o, = g(s;), which renders observations in the
input modality required by the policy (e.g., RGB images).
Accordingly, the fidelity of simulation can be assessed along
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Fig. 2: Proposed framework for real-to-sim policy evaluation. We present a pipeline that evaluates real-world robot policies in simulation
using Gaussian Splatting-based rendering and soft-body digital twins. Policies are first trained on demonstrations collected by the real
robot, and a phone scan of the workspace is used to reconstruct the scene via Gaussian Splatting. The reconstruction is segmented into
robot, objects, and background, then aligned in position and color to enable photorealistic rendering. For dynamics, we optimize soft-body
digital twins from object interaction videos to accurately reproduce real-world behavior. The resulting simulation is exposed through
a Gym-style API [26], allowing trained policies to be evaluated efficiently. Compared with real-world trials, this simulator is cheaper,

reproducible, and scalable, while maintaining strong correlation with real-world performance.

two axes: (i) the accuracy of simulated dynamics, and (ii) the
realism of rendered observations.

In this work, we address both axes by jointly reducing
the visual gap and the dynamics gap. We employ physics-
informed reconstruction of soft-body digital twins to align
simulated dynamics with real-world object behavior, and use
high-resolution Gaussian Splatting as the rendering engine to
generate photorealistic observations. The following sections
describe these components in detail, and an overview of the
full framework is shown in Figure 2.

B. Preliminary: PhysTwin

We adopt the PhysTwin [25] digital twin framework,
which reconstructs and simulates deformable and rigid ob-
jects from video using a dense spring-mass system. Each
object is represented as a set of mass nodes connected by
springs, with springs formed between each pair of nodes
within a distance threshold d. The node positions evolve
according to Newtonian dynamics.

To capture the behavior of diverse real-world deformable
objects with varying stiffness, friction, and other material
properties, PhysTwin employs a real-to-sim pipeline that
jointly optimizes a set of physical parameters, including the
spring threshold d and per-spring stiffness coefficients Y. The
optimization is performed from a single video of a human in-
teracting with the object by hand: human hand keypoints are
tracked and attached to the spring-mass system as kinematic
control points, and system parameters are tuned to minimize
the discrepancy between tracked object motions in the video
and their simulated counterparts. For rigid bodies, Y is fixed
to a large value to suppress deformation. We adopt this same
real-to-sim process for system identification of the objects
that interact with the robot (plush toy, rope, and T-block).

C. Real-to-Sim Gaussian Splatting Simulation

We now describe the construction of our Gaussian
Splatting-based simulator. Our approach addresses two com-
plementary goals: (i) closing the visual gap through GS scene
reconstruction, positional alignment, and color alignment,
and (ii) closing the dynamics gap through physics-based
modeling and deformation handling.

1) GS Construction: We begin by acquiring the appear-
ance of each object of interest using Scaniverse [72], an
iPhone app that automatically generates GS reconstructions
from video recordings. In a tabletop manipulation scene, we
first scan the static robot workspace, including the robot,
table, and background, then scan each experimental object
individually. The resulting reconstructions are segmented
into robot, objects, and background using the SuperSplat [73]
interactive visualizer. This reconstruction step is required
only once per task.

2) Positional Alignment: After obtaining GS reconstruc-
tions of the static background, robot, PhysTwin object,
and other static objects, we align all components to the
reference frames: the robot base frame and canonical object
frames. PhysTwin objects and static meshes are aligned to
their corresponding PhysTwin particle sets and object 3D
models by applying a relative 6-DoF transformation. For the
robot, we automatically compute the transformation between
the reconstructed GS model and ground truth robot points
(generated from its URDF) using a combination of Iterative
Closest Point (ICP) [74] and RANSAC [75]. We use 2,000
points per link to ensure sufficient coverage of link geometry.
Because the background GS is in the same frame as the robot
GS, we apply the same transformation estimated by ICP.

To enable the simulation of the static robot GS, we asso-
ciate each Gaussian kernel with its corresponding robot link



through a link segmentation process. After ICP alignment,
each kernel is assigned to a link by finding its nearest
neighbor in the sampled robot point cloud and inheriting
that point’s link index. This process is applied to all links,
including the gripper links, allowing us to render continuous
arm motion as well as gripper opening and closing. The same
procedure generalizes naturally to other robot embodiments
with available URDF models.

3) Color Alignment: A major contributor to the visual gap
in GS renderings is that reconstructed scenes often lie in a
different color space from the policy’s training data, leading
to mismatched pixel color distributions, which can affect
policy performance. In our setting, GS reconstructions inherit
the color characteristics of iPhone video captures, while
policies are trained in the color space of the robot’s cameras
(e.g., Intel RealSense, which is known to introduce color
shifts). To close this gap, we design a color transformation
that aligns GS colors to the real camera domain.

We perform this alignment directly in RGB space. First,
we render images from the scene GS at the viewpoints of
the fixed real cameras, using the original Gaussian kernel
colors and opacities. Next, we capture real images from the
same viewpoints, forming paired data for optimization. We
then solve for a transformation function f that minimizes the
pixel-wise color discrepancy:

1 N
* = arg min — i) —qill2, pi€lgs, qi€lgs, (1
f gfe_(iNi:Zin(P) qill2; pi€lgs, qi€lgs, (1)

where Igs and Irg denote GS renderings and real camera cap-
tures, N is the number of pixels, p; and g; are corresponding
RGB values, and % is the function space. We parameterize
Z as the set of degree-d polynomial transformations:

F={fL fielr’, )
f)=1fo A - fa-1t pi - P, 3)

which reduces the problem to a standard least-squares regres-
sion. We solve it using Iteratively Reweighted Least Squares
(IRLS) [76] to improve robustness to outliers. Empirically,
we find that a quadratic transform (d = 2) offers the best
trade-off between expressivity and overfitting.

4) Physics and Deformation: With GS reconstruction and
alignment mitigating the rendering gap, the physics model
must accurately capture real-world dynamics. We use a
custom physics engine built on NVIDIA Warp [77], ex-
tending the PhysTwin [25] spring-mass simulator to support
collisions with both robot end-effectors and objects in the
environment. For grasping soft-body digital twins, we avoid
the common but unrealistic practice of fixing object nodes
to the gripper. Instead, we model contact purely through
frictional interactions between gripper fingers and the ob-
ject. The gripper closing motion halts automatically once a
specified total collision-force threshold is reached, yielding
more realistic and stable grasps.

At each simulation step, the updated robot and environ-
ment states from the physics engine are propagated to the
Gaussian kernels. For rigid bodies, including objects and

robot links, kernel positions and orientations are updated
using the corresponding rigid-body transformations. For de-
formable objects, following PhysTwin [25], we apply Linear
Blend Skinning (LBS) [78] to transform each kernel based
on the underlying soft-body deformation.

Overall, with GS rendering, the physics solver, and LBS-
based deformation being the major computational steps, our
simulator runs at 5 to 30 FPS on a single GPU, depending on
the robot-object contact states. By eliminating the overhead
of real-world environment resets and leveraging multi-GPU
parallelization, we empirically achieve evaluation speeds
several times faster than real-world execution.

D. Policy Evaluation

To evaluate visuomotor policies in our simulator, we
first design tasks and perform real-world data collection
and policy training. Demonstrations are collected through
human teleoperation using GELLO [79], after which we
scan the scene to construct the corresponding simulation
environments. All policies are trained exclusively on real
data (i.e., no co-training between simulation and reality).
To improve consistency and reduce variance, we follow the
practice of Kress-Gazit et al. [71] by defining a fixed set
of initial object configurations for each task and performing
evaluations in both simulation and the real world. In the real
world, we use a real-time visualization tool that overlays
simulated initial states onto live camera streams, enabling
operators to accurately and consistently reproduce the start-
ing configurations.

Policy performance u is measured in terms of binary task
success rates: in the real world, success is determined by hu-
man evaluators, while in simulation, task-specific criteria are
automatically computed from privileged simulation states. In
this work, we evaluate the performance of several state-of-
the-art imitation learning algorithms, as well as checkpoints
from different training stages for each network. Notably,
the simulator is readily extensible to other policy types, as
we package the entire system into the widely adopted Gym
environment API [26]. We are committed to open-sourcing
our implementation to encourage community adoption and
enable scalable, reproducible policy evaluation.

IV. EXPERIMENTS

In this section, we test the performance of imitation
learning policies in both the real world and our simulation
environment to examine the correlation. We aim to address
the following questions: (1) How strongly do the simulation
and real-world performance correlate? (2) How critical are
rendering and dynamics fidelity for improving this correla-
tion? (3) What practical benefits can the correlation provide?

A. Experiment Setup
1) Tasks: We evaluate policies on three representative ma-
nipulation tasks involving both deformable and rigid objects:
o Toy packing: The robot picks up a plush sloth toy from

the table and packs it into a small plastic box. A trial is
considered successful only if the toy’s arms, legs, and
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Fig. 3: Correlation between simulation and real-world policy performance. Left: Simulation success rates (y-axis) vs. real-world
success rates (x-axis) for toy packing, rope routing, and T-block pushing, across multiple state-of-the-art imitation learning policies and
checkpoints. The tight clustering along the diagonal indicates that, even with binary success metrics, our simulator faithfully reproduces
real-world behaviors across tasks and policy robustness levels. Right: Compared with IsaacLab, which models rope routing and push-T
tasks, our approach yields substantially stronger sim-to-real correlation, highlighting the benefit of realistic rendering and dynamics.
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Fig. 4: Per-policy, per-task performance across training. x-
axis: training iterations, y-axis: success rates. Simulation (blue)
and real-world (orange) success rates are shown across iterations.
Unlike Figure 3, which aggregates across policies, this figure
shows unrolled curves for each task-policy pair. Improvements in
simulation consistently correspond to improvements in the real
world, establishing a positive correlation and demonstrating that our
simulator can be a reliable tool for evaluating/selecting policies.

body are fully contained within the box, with no parts
protruding.

o Rope routing: The robot grasps a cotton rope, lifts it, and
routes it through a 3D-printed clip. Success is defined
by the rope being fully threaded into the clip.

o T-block pushing (push-T): A 3D-printed T-shaped block
is placed on the table. Using a vertical cylindrical
pusher, the robot must contact the block and then
translate and reorient it to match a specified target pose.

Both the toy packing and rope routing tasks are challeng-

ing because the small tolerances of the box and clip require

the policy to leverage visual feedback. Similarly, in push-T,
the policy must infer the block’s pose from images to achieve
the required translation and reorientation.

2) Evaluation: To reduce variance and ensure systematic
evaluation, we initialize scenes from a fixed set of config-
urations shared between the simulation and the real world.
These initial configurations are generated in our simulator
by constructing a grid over the planar position (x,y) and
rotation angle 6 of objects placed on the table. The grid
ranges are chosen to ensure that the evaluation set provides
coverage comparable to the training distribution. In the real
world, objects are positioned to replicate the corresponding
grid states. We use an evaluation set size of 20, 27, and 16
for toy packing, rope routing, and push-T, respectively.

We use binary success criteria for all tasks. Following [19],
we quantify the alignment between simulation and real-world
performance using the Mean Maximum Rank Variation
(MMRV) and the Pearson correlation coefficient (r).

The number of evaluation episodes plays a critical role in
the uncertainty of measured success rates [11]. To capture
this variability, we report uncertainty in our results using the
Clopper—Pearson confidence interval (CI). We also visual-
ize the Bayesian posterior of policy success rates under a
uniform Beta prior with violin plots.

We evaluate four state-of-the-art imitation learning poli-
cies: ACT [1], DP [2], SmolVLA [4], and Pi-O [3]. The
real-world setup consists of a single UFactory xArm 7 robot
arm equipped with two calibrated Intel RealSense RGB-D
cameras: a D405 mounted on the robot wrist and a D455
mounted on the table as a fixed external camera. All policies
take as input images from both camera views, along with
the current end-effector state. For push-T, the end-effector
state includes only the 2D position (x,y); for the other
tasks, it additionally includes the position, rotation, and
gripper openness. Across all tasks, we collect 39-60 suc-
cessful demonstrations via teleoperation using GELLO [79].
Training is performed using the open-source LeRobot [80]
implementation, except for Pi-0, where we adopt the original
implementation [3] for better performance.
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and dynamics compared to our approach.

B. Baseline

As a baseline, we use NVIDIA IsaacLab [13] as the
simulation environment. Robot and environment assets are
imported and aligned in position and color to match the
real-world setup. IsaacLab provides a general-purpose robot
simulation framework built on the PhysX physics engine, but
its support for deformable objects remains limited. For ropes,
we approximate deformable behavior using an articulated
chain structure. However, for the plush toy, realistic grasping
and deformation could not be stably simulated, making task
completion infeasible; we therefore excluded this task from
our quantitative comparisons.

C. Sim-and-Real Correlation

Figure 3 (left) shows the performance of all policy check-
points in both simulation and the real world. We observe a
strong correlation: policies that achieve higher success rates
in reality also achieve higher success rates in our simulator,
consistently across architectures and tasks. Figure 3 (right)
further highlights that our simulator achieves stronger corre-
lation than the IsaacLab baseline [13]. This is also confirmed
by the quantitative results in Table I, with our simulator
achieving a Pearson coefficient r > 0.9 for all policies. By
contrast, the baseline yields only r = 0.649 on push-T, and an
even lower r = 0.237 on rope routing as a result of the larger
dynamics gap. The low MMRYV value for the IsaacLab rope
routing task arises from its consistently low success rates,
which in turn produce fewer ranking violations.

D. Policy Performance Analysis

Figure 4 further illustrates per-policy, per-task perfor-
mance curves across training iterations. We observe that
simulation success rates generally follow the same pro-
gression as real-world success rates, further highlighting
the correlation. For example, in the toy packing-DP case,
both simulation and real success rates peak at iteration
5,000 and decline significantly by iteration 7,000. Similarly,

Toy packing Rope routing T-block pushing

MMRV | rt MMRV rt MMRV ] rt
IsaacLab [13] - - 0.022 0.237 0.031 0.649
Ours w/o color 0.200 0.805 0.156 0.714 0.031 0.529
Ours w/o phys. 0.200 0.694 0.119 0.832 0.031 0.905
Ours 0.087 0.944 0.096 0.901 0.000 0.915

TABLE I: Quantitative comparison of correlation. Ours w/o
color: our method without color alignment. Ours w/o phys.: our
method without physics optimization. Lower MMRV indicates
fewer errors in ranking policy performance, while higher r reflects
stronger statistical correlation. Best results are highlighted in bold.

in the rope routing-Pi-O case, performance peaks around
iteration 20,000. These results suggest that our simulator can
be used as a practical tool for monitoring policy learning
dynamics, selecting checkpoints for real-world testing, and
setting approximate expectations for real-world performance.

In cases where simulation and real success rates do not
overlap, such as toy packing-SmolVLA and rope routing-
ACT, the simulator still captures the correct performance
trend, even if the absolute success rates differ. We attribute
these discrepancies to residual gaps in visual appearance and
dynamics, as well as variance from the limited number of
evaluation episodes (16-27 per checkpoint).

E. Ablation Study

To measure the importance of the rendering and dynamics
realism for our Gaussian Splatting simulator, we perform
ablation studies on the correlation metrics MMRV and r.
We provide two ablated variants of our simulation:

o Ours w/o color alignment: we skip the color alignment
step in simulation construction and use the original GS
colors in the iPhone camera space, creating a mismatch
in the appearance.

e Ours w/o physics optimization: instead of using the
fully-optimized spring stiffness Y, we use a global
stiffness value shared across all springs. The global
value is given by the gradient-free optimization stage



in PhysTwin [25]. For push-T, we keep its rigidity and
change its friction coefficients with the ground and the
robot to create a mismatch in dynamics.

Figure 5 presents a visual comparison between our sim-
ulator, its ablated variants, and the baseline, using the same
policy model and identical initial states. Our full method
achieves the best rendering and dynamics fidelity, resulting
in policy rollouts that closely match real-world outcomes.
In contrast, the w/o physics optimization variant produces
inaccurate object dynamics, while the w/o color alignment
variant shows clear color mismatches.

Empirically, both dynamics and appearance mismatches
lead to deviations between simulated and real policy rollouts,
though policies exhibit different sensitivities to each type of
gap. For example, in the rope routing task, the rope fails to
enter the clip when stiffness is mis-specified (w/o physics
optimization). In the push-T task, color discrepancies alter
the robot’s perception, causing it to push the block differently
(w/o color alignment).

Table I details the quantitative results. Overall, our full
method achieves the highest correlation values, outperform-
ing the ablated variants. In particular, lower MMRV values
reflect more accurate policy ranking, while higher Pearson
correlation coefficients (r) indicate stronger and more consis-
tent correlations without being influenced by outlier points.

V. CONCLUSION

In this work, we introduced a framework for evaluating
robot manipulation policies in a simulator that combines
Gaussian Splatting-based rendering with real-to-sim digital
twins for deformable object dynamics. By addressing both
appearance and dynamics, our simulator narrows the sim-to-
real gap through physics-informed reconstruction, positional
and color alignment, and deformation-aware rendering.

We demonstrated the framework on representative de-
formable and rigid body manipulation tasks, evaluating sev-
eral state-of-the-art imitation learning policies. Our experi-
ments show that policy success rates in simulation exhibit
strong correlations with real-world outcomes (r > 0.9). Fur-
ther analysis across highlights that our simulator can predict
policy performance trends, enabling it to serve as a practical
proxy for checkpoint selection and performance estimation.
We found that both physics optimization and color alignment
are critical for closing policy performance gaps.

In future work, scaling both simulation and evaluation to
larger task and policy sets could provide deeper insights into
the key design considerations for policy evaluation simula-
tors. Moreover, our real-to-sim framework can be general-
ized to more diverse environments, supporting increasingly
complex robot manipulation tasks.
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APPENDIX I
ADDITIONAL TECHNICAL DETAILS

A. Platform and Tasks

1) Robot Setup: We use a UFactory xArm 7 robot
mounted on a tabletop. The robot arm has 7 degrees of
freedom. The robot end-effector can be interchanged between
the standard xArm gripper and a custom 3D-printed pusher,
depending on the task. Two Intel RealSense RGB-D cameras
are connected to the robot workstation: a D455 fixed on the
table overlooking the workspace, and a D405 mounted on the
robot wrist via a custom 3D-printed clip. To ensure consistent
appearance between real and simulated observations, we fix
the white balance and exposure settings of both cameras.

2) Data Collection: We use GELLO for data collection.
GELLO [79] streams high-frequency joint-angle commands
to the robot, which we execute using joint-velocity control
for smooth motion tracking. At each timestep, the robot com-
putes the difference between the commanded and measured
joint angles, then sets each joint’s target angular velocity
proportional to this delta. To prevent abrupt movements, the
velocity vector is normalized such that its total ¢, norm does
not exceed a predefined limit. This approach enables stable
and continuous trajectory following without jerky motions.
During policy evaluation, we apply the same control strategy,
ensuring that the policy outputs are tracked consistently in
both real and simulated environments.

(b) Evaluation initial state distributions

Fig. 6: Training and evaluation data distributions. Top: spatial
coverage of initial states in the training set. Bottom: the correspond-
ing coverage in the evaluation set.

Name Dynamics Type 3D Representation
XArm-gripper-tabletop Articulated+Fixed GS+URDF+Mesh
xArm-pusher-tabletop Articulated+Fixed GS+URDF+Mesh
Plush sloth Deformable GS+PhysTwin
Rope Deformable GS+PhysTwin
T-block Rigid GS+PhysTwin
Box Fixed GS+Mesh
Clip Fixed GS+Mesh

TABLE II: Simulation assets. Each row corresponds to an indi-
vidual Gaussian Splatting scan, specifying its dynamics type in
simulation and the 3D representation used for physical simulation
and rendering. These assets are combined to instantiate all three
manipulation tasks within the simulator.

3) Task Definition: To evaluate the effectiveness of our
simulator, we select a set of rigid- and soft-body manipula-
tion tasks that require the policy to leverage object dynamics
while incorporating visual feedback. The formulation and
setup of each task are described as follows.

a) Toy Packing: The robot grasps the plush toy by one
of its limbs, lifts it above the box, and adjusts its pose such
that the arm and leg on one side hang into the box. The
robot then tilts the toy slightly to allow the other side’s limbs
to enter, before lowering it further to pack the toy snugly
inside the box. Because the box is intentionally compact, the
robot must adapt to the toy’s pose to successfully execute the
packing motion without leaving any limbs protruding over
the box edges. A total of 39 human demonstration episodes
are recorded for this task.

b) Rope Routing: The robot grasps one end of the rope
(marked with red rubber bands), lifts it, and positions it
above the cable holder before lowering it to gently place
the rope into the slot. Because the rope—holder contact point
is offset from the grasp location, the rope dynamics play a
critical role in determining the appropriate displacement and
trajectory required for successful placement. A total of 56
human demonstration episodes are collected for this task.

c) T-block Pushing: The robot begins with the pusher
positioned above an orange marker on the table, while
the end-effector’s z-coordinate remains fixed throughout the
motion. The robot must move to the T-block’s location and
push it toward a predefined goal region. The goal is not
physically marked in the workspace but is visualized as a
yellow translucent mask overlaid on the fixed-camera images.



Robot pose 1 Robot pose 2

Real
alignment (RealSense)

Sim before

Sim after
alignment

Robot pose 3

Robot pose 4 Robot pose 5

Fig. 7: Color alignment. Five image pairs used for the color alignment process are shown. Top: real images captured by the RealSense
cameras. Middle: raw Gaussian Splatting renderings with the robot posed identically to the real images. Bottom: GS renderings after
applying the optimized color transformation, showing improved consistency with real-world color appearance.

Plush toy PhysTwin training video

Fig. 8: PhysTwin training videos. A few representative camera
frames are shown for each training video, where a human subject
interacts with the deformable object by hand. These videos are used
by PhysTwin to reconstruct the object’s geometry and estimate its
physical parameters for building the digital twin models.

The initial positions and orientations of the T-block are
randomized, and a total of 60 human demonstration episodes
are collected for this task.

B. Simulation

1) Assets: A summary of the simulation assets used in our
experiments is provided in Table II. Each asset corresponds
to a single Gaussian Splatting reconstruction followed by a
pose alignment process.

2) Positional Alignment: To align the robot-scene Gaus-
sian Splatting scan with the robot’s URDF model, we first
perform a coarse manual alignment in SuperSplat [73] to
roughly match the origins and orientations of the x, y,
and z axes. Next, we manually define a bounding box to
separate the robot Gaussians from the scene Gaussians. We
then apply ICP registration between two point clouds: one
formed by the centers of the robot Gaussians, and the other
by uniformly sampled surface points from the robot URDF
mesh. The resulting rigid transformation is applied to the
entire GS, ensuring that both the robot and scene components
are consistently aligned in the unified coordinate frame.

Algorithm 1: Simulation Loop

Data: PhysTwin particle positions and velocities x, v,
PhysTwin spring-mass parameters P, robot
mesh R, robot motion a, static meshes M|,
ground plane L, total timestep T, substep
count N, Gaussians G

fort<0to7—1 do

X v =x, v,

1.y = interpolate_robot_states(R;, a;)

for t<~0to N—1 do

v* = step-springs(x*,v*, P)

v* = self_collision(x*,v*, P)

x*,v* = robot_mesh_collision(x*,v*,R¢,az)

for i< 1 to k do

| x*,v* = fixed_mesh_collision(x*,v*, M;)

end

x*,v* = ground_collision(x*,v*,L)
end
Xt+15Vi+1 = x*,v*
Riy1= R;‘v

G;+1 = renderer_update(G;, X, X+ 1,Ry, Ry41)
end

3) Color Alignment: The robot-scene scan has the most
significant influence on the overall color profile of the
rendered images. To align its appearance with the RealSense
color space, we apply Robust IRLS with Tukey bi-weight
to estimate the color transformation. We use five images of
resolution 848x480 for this optimization. To mitigate the
imbalance between the dark tabletop and the bright robot
regions, each pixel is weighted by the norm of its RGB
values, giving higher weight to high-brightness pixels in the
least-squares loss. The optimization is run for 50 iterations.
Figure 7 visualizes the input images and the resulting color
alignment.

4) PhysTwin Training: We use the original PhysTwin [25]
codebase for training the rope and sloth digital twins. Phys-



Model Visual State Action Relative?
ACT mean—std mean—std mean—std False
DP mean—std min—max min—max False
SmolVLA identity mean-—std mean—std True
Pi-0 mean—std mean—std mean—std True

TABLE III: Normalization schemes across models. Columns
indicate the normalization applied to each modality (visual, state,
and action) and whether the model operates in a relative action
space. Mean—std denotes standardization to zero mean and unit
variance, while min-max scales values to [—1,1].

Color Transformations Spatial Transformations

Type Range Type Range
Brightness (0.8, 1.2) Perspective  0.025
Contrast (0.8,1.2) Rotation [-5°,5°]
Saturation (0.5, 1.5) Crop (10, 40] px
Hue (—0.05,0.05)

Sharpness (0.5, 1.5)

TABLE 1V: Image augmentation configuration. For color trans-
formations, numeric ranges denote multiplicative or additive jitter
factors applied to image intensities. For spatial transformations,
ranges specify the perturbation magnitudes for projective distortion,
rotation, and cropping.

Twin requires only a single multi-view RGB-D video to
reconstruct object geometry and optimize physical param-
eters. For data capture, we record using three fixed Intel
RealSense D455 cameras. The videos for the two objects
are visualized in Figure 8. For the T-block pushing task,
since it is a rigid object, we construct the PhysTwin object
by uniformly sampling points within the mesh, connecting
them with springs using a connection radius of 0.5 and a
maximum of 50 neighbors, and assigning a uniform spring
stiffness of 3 x 10* to all connections. This setup ensures
that the object behaves like a rigid body.

5) Simulation Loop: The simulation loop, including robot
action processing, PhysTwin simulation, collision handling,
and renderer updates, is summarized in Algorithm 1.

C. Policy Training

1) Datasets: To better understand the data distribution
used for both policy training and evaluation, we visualize
the coverage of initial states in Figure 6.

2) Normalizations: Normalization plays a crucial role in
ensuring stable policy learning and consistent performance
across models. For input and output normalization, we
follow the conventions defined in each algorithm’s original
implementation (summarized in Table IIT). Specifically, the
mean—std scheme standardizes features to zero mean and
unit variance, whereas the min—-max scheme scales each
dimension independently to [—1,1].

For the VLA (SmolVLA and Pi-0) policies, we employ
relative actions to encourage more corrective and stable
behavior, treating each action as an SE(3) transformation
of the end-effector pose in the base frame. Inspired by
[11], we compute both normalization statistics (mean—std or
min—max) over a rolling window corresponding to the action
chunk size across the entire dataset. Each action within a

Model Visual Res. State Dim. Action Dim. T, T,
ACT L:120x212; H: 240x240 8 8 50 50
DP L:120x212; H: 240%240 8 8 64 50
SmolVLA  L:120x212; H: 240x240 8 8 50 50
Pi-0 L:120x212; H: 240x240 8 8 50 50

TABLE V: Observation and action spaces. Low-resolution inputs
are used for the rope-routing task, while high-resolution inputs
are used for the other tasks. State and action vectors include end-
effector position, quaternion, and gripper state, expressed in either
absolute or relative coordinates. Tp and Te denote the prediction
and execution horizons, respectively.

Vision Backbone  #V-Params #P-Params LR Batch Size #Iters
ResNet-18 (ACT) 18M 34M 1x1073 512 7k
ResNet-18 (DP) 18M 245M 1x107* 512 7k
SmolVLM-2 350M 100M 1x10~* 128 20k
PaliGemma (Pi-0) 260B 300M 5%x107° 8 30k

TABLE VI: Training configuration. Model-specific hyperparam-
eters used in policy training. #V-Params and #P-Params denote
the number of parameters in the visual encoder and policy head,
respectively. LR, Batch Size, and #Iters refer to the learning rate,
batch size, and total training iterations.

chunk is then normalized using its own statistics to maintain
a consistent magnitude in the normalized space—mitigating
the tendency of later actions in the chunk to exhibit larger
amplitudes.

3) Image Augmentations: To improve visual robustness
and generalization, we apply a combination of color and
spatial augmentations to each input image during training.
For every image in a training batch, three augmentation
operations are randomly sampled and composed. Table IV
summarizes the augmentation types and their corresponding
parameter ranges.

4) Hyperparameters: A complete overview of the obser-
vation and action spaces, as well as the training configu-
rations for each model, is presented in Tables V and VI
For VLA-based policies, we finetune only the action head
(keeping the pretrained vision-language encoder frozen) on
our datasets.

D. Evaluation

1) Evaluation Protocol: During evaluation, we sample
a fixed set of initial states, and rollout the policies from
both sim and real. To ensure that sim and real align with
each other, we first sample object initial states in simulation
and render them from the same camera viewpoint as the
real-world physical setup. Then, we save the set of initial
frame renderings, and a real-time visualizer overlays these
simulated states onto the live camera stream, enabling a
human operator to manually adjust the objects to match the
simulated configuration.

2) Episode Settings: In all evaluation experiments in the
main paper, the number of episodes for each task and the
grid-based initial configuration randomization ranges are set
as in Table VIIL.

3) Success Criteria: Real robot experiments typically rely
on human operators to record success and failure counts,
which is tedious and introduces human bias. For simulated
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Fig. 9: Sim-and-real correlations from scaled-up simulation evaluations. Each point represents a policy evaluated on both domains, and

the shaded region indicates the 95% confidence interval. Increasing

the number of simulated episodes reduces statistical uncertainty and

yields stable correlation estimates with real-world success rates, with the minimum observed correlation coefficient of 0.897. Compared to
the main-paper experiments, the relative ordering of policy checkpoints remains consistent, demonstrating the robustness of the evaluation

across larger-scale simulations.

Task Episodes x (cm) y (cm) 0 (deg)
Toy packing (toy) 20 [-5,5] [-5,3] [-5,5]
Toy packing (box) 20 [-5,5] [0,5] [-5,5]
Rope routing (rope) 27 [(-5,5] [-5,5] [=10,10]
T-block pushing (T-block) 16 [-5,5] [-5,5] {£45,£135}

TABLE VII: Task randomization ranges used for evaluation.
For each task, the initial object configurations are randomized: the
plush toy and box in toy packing, the rope in rope routing, and the
T-block in T-block pushing.

experiments to scale up, automated success criteria are
necessary. For all three tasks, we design metrics based on
simulation states as follows:

a) Toy Packing: For each frame, we calculate the num-
ber of PhysTwin mass particles that fall within an oriented
bounding box of the box’s mesh. Within the final 100
frames (3.3 seconds) of a 15-second episode, if the number
exceeds a certain threshold for over 30 frames, the episode
is considered successful. Empirically, the total number of
PhysTwin points is 3095, and we use a threshold number of
3050.

b) Rope Rouing: For each frame, we calculate the
number of PhysTwin spring segments that pass through the
openings of the channel of the clip. Within the final 100
frames (3.3 seconds) of a 30-second episode, if for both
openings and more than 30 frames, the number of the spring
segments that cross the opening is over 100, that indicates
a sufficient routing through the clip and the episode is
considered successful.

¢) T-block Pushing: For each frame, we calculate the
mean squared Euclidean distance between the current PhysT-
win particles and the target-state PhysTwin particles. Within
the final 100 frames (3.3 seconds) of a 60-second episode,
if the mean squared distance is less than 0.002, the episode
is considered successful.

APPENDIX I1
ADDITIONAL RESULTS
A. Scaling up Simulation Evaluation

In the main paper, we evaluate each policy in simulation
using an identical set of initial states as in the real-world

experiments. This design controls for randomness but limits
the number of available trials and thus results in high sta-
tistical uncertainty, as reflected by the wide Clopper-Pearson
confidence intervals.

To account for the distributional differences introduced
by uniformly sampling within the randomization range, we
adopt slightly modified randomization settings compared
to the grid-range experiments in the main paper. In the
toy packing task, we use the same randomization range
as described previously. For the rope routing task, we en-
large the x,y, 0 randomization ranges to [—7.5,7.5] cm and
[—15,15] degrees, respectively. For the T-block pushing task,
we enlarge the x and y range to [—7.5,7.5] cm.

To better estimate the asymptotic correlation between
simulation and real-world performance, we further scale
up the number of simulation evaluations by sampling 200
randomized initial states from the task distribution. Figure 9
reports the resulting correlations between the scaled-up sim-
ulation metrics and real-world success rates.

We observe that the confidence intervals are significantly
narrowed down, and the correlation estimates stabilize as
the number of simulation episodes increases, suggesting that
simulation fidelity becomes a reliable predictor of real-world
outcomes when averaged across diverse task instances.

B. Replaying Real Rollouts

To further assess correspondence between our simulation
and the real world, we perform replay-based evaluations,
where real-world rollouts during policy inference are re-
executed in the simulator using the same control commands.
This allows us to disentangle dynamic discrepancies from
appearance gaps, i.e., the difference in policy behaviors
introduced by differences in perceived images is eliminated.

In total, we replay the real-world rollouts of 16 check-
points each with 20 episodes for toy packing, 15 checkpoints
each with 27 episodes for rope routing, and 12 checkpoints
each with 16 episodes for T-block pushing. The object
states in simulation are initialized to be identical to the
corresponding real episodes.
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Fig. 10: Sim-and-real correlations from replaying real-world rollouts. Each point corresponds to a replay of a real-world policy
checkpoint’s evaluation results using identical control commands and camera trajectories within the simulator. The success rates are
averaged over all episodes for each checkpoint. The resulting alignment highlights the degree to which our simulator reproduces the
observed real-world outcomes.

Toy packing Rope routing T-block pushing
| GT+ GT- | GT+ GT- | GT+ GT-
Replay + 106 37 Replay + 276 28 Replay + 63 1
Replay — 25 132 Replay — 24 77 Replay — 17 111

TABLE VIII: Per-episode replay result. We calculate the per-episode correlation between the replayed result and the real-world ground
truth. Each subtable shows a 2 x 2 confusion matrix for each task (TP, FP, FN, TN), where rows indicate replay outcomes and columns
indicate ground truth. Each entry records the total number of episodes, summed across all policy checkpoints. The strong diagonal
dominance reflects high sim-real agreement in replayed trajectories.

Figure 10 shows the resulting correlations, and Table VIII
reports the per-episode replay statistics. Across all three
tasks, the confusion matrices exhibit strong diagonal domi-
nance, indicating high agreement between replayed and real
outcomes.

Notably, for toy packing, false positives (replayed success
but real failure) are more frequent than false negatives,
reflecting that the simulator tends to slightly overestimate
success, likely due to simplified contact or friction models.
For T-block pushing, false negatives are more frequent than
false positives, indicating that some real success trajectories
cannot be reproduced in the simulation, potentially due to a
slight mismatch in friction coefficient and initial states.

Overall, the high diagonal values highlight that the simu-
lator can reproduce real rollout outcomes most of the time,
even with pure open-loop trajectory replay.

C. Additional Qualitative Results

We include further visualizations in Figure 11, which com-
pares synchronized simulation and real-world trajectories
across representative timesteps. For each task, we display
both front and wrist camera views.

From the figure, we observe that the simulated trajec-
tories closely reproduce the real-world sequences in both
front-view and wrist-view observations. Object poses, con-
tact transitions, and end-effector motions remain consistent
across corresponding timesteps, indicating that the simulator
effectively captures the underlying task dynamics as well as
visual appearance.



Toy packing (real)

Toy packing (sim)

Rope routing (real)

=k
=y

w2
SN—

on

=
=

=

2

-

Q

o

S
2

T-block pushing (real)

T-block pushing (sim)

Fig. 11: Sim and real rollout trajectories. Columns correspond to synchronized timesteps along each rollout, with identical timestamps
selected for simulation and real-world policy rollouts to illustrate correspondence. Each panel (e.g., toy packing (real)) shows front-view
(top) and wrist-view (bottom) observations, with panels alternating between real and simulated trajectories.
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